Learning Filter Scale and Orientation In CNNs

نویسندگان

  • Ilker Cam
  • F. Boray Tek
چکیده

Convolutional neural networks have many hyperparameters such as the filter size, number of filters, and pooling size, which require manual tuning. Though deep stacked structures are able to create multi-scale and hierarchical representations, manually fixed filter sizes limit the scale of representations that can be learned in a single convolutional layer. This paper introduces a new adaptive filter model that allows variable scale and orientation. The scale and orientation parameters of filters can be learned using back propagation. Therefore, in a single convolution layer, we can create filters of different scale and orientation that can adapt to small or large features and objects. The proposed model uses a relatively large base size (grid) for filters. In the grid, a differentiable function acts as an envelope for the filters. The envelope function guides effective filter scale and shape/orientation by masking the filter weights before the convolution. Therefore, only the weights in the envelope are updated during training. In this work, we employed a multivariate (2D) Gaussian as the envelope function and showed that it can grow, shrink, or rotate by updating its covariance matrix during back propagation training . We tested the new filter model on MNIST, MNIST-cluttered, and CIFAR-10 and compared the results with the networks that used conventional convolution layers. The results demonstrate that the new model can effectively learn and produce filters of different scales and orientations in a single layer. Moreover, the experiments show that the adaptive convolution layers perform equally; or better, especially when data includes objects of varying scale and noisy backgrounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks

Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...

متن کامل

Convolutional Gating Network for Object Tracking

Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem.  The paper presents a new model for combining convolutiona...

متن کامل

Learning Steerable Filters for Rotation Equivariant CNNs

In many machine learning tasks it is desirable that a model’s prediction transforms in an equivariant way under transformations of its input. Convolutional neural networks (CNNs) implement translational equivariance by construction; for other transformations, however, they are compelled to learn the proper mapping. In this work, we develop Steerable Filter CNNs (SFCNNs) which achieve joint equi...

متن کامل

The effect of meta-cognitive learning and self-directed learning on the level of e-learning in the managers of universities: Mediating role of life orientation

Abstract Introduction: E-Learning is one of the most important and favorable topics in the scientific society and they attempt to facilitate the complexities aspects of human being learning.This research aimed to investigate the mediating role of life orientation on the effect of metacognitive learning and self-directed learning on e-learning level in universities’ managers.The present study wa...

متن کامل

Transfer Learning in CNNs Using Filter-Trees

Convolutional Neural Networks (CNNs) are very effective for many pattern recognition tasks. However, training deep CNNs needs extensive computation and large training data. In this paper we propose Bank of Filter-Trees (BFT) as a transfer learning mechanism for improving efficiency of learning CNNs. A filter-tree corresponding to a filter in k convolutional layer of a CNN is a subnetwork consis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018